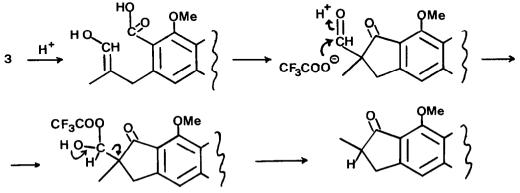
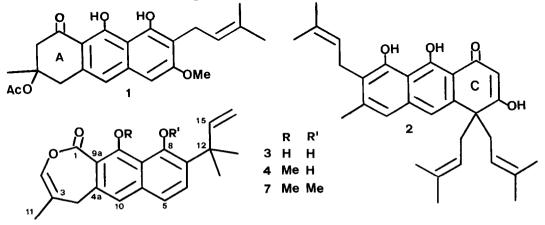
A NOVEL TYPE OF PRENYLATED ANTHRANOID FROM PSOROSPERMUM GLABERRIMUM


Bruno Botta, Franco Delle Monache*, and Giuliano Delle Monache Centro Chimica dei Recettori, Istituto di Chimica, Università

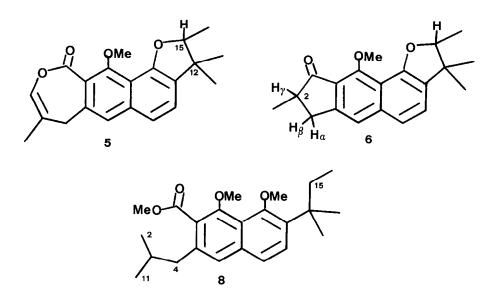
Cattolica S.Cuore, Largo F.Vito 1, 00168 Roma, Italy Abstract: Psorolactone, belonging to a new class of prenylated anthranoids, has been isolated from <u>Psorospermum</u> glaberrimum and its structure determined on the basis of the spectral data and chemical transformations.

During our chemosystematic investigation of South American <u>Vismia</u> spp and African <u>Psorospermum</u> spp (Vismieae) several biologically active vismiones and ferruginins [1] have been isolated. These prenylated anthranoids (a representative of each class is shown in <u>1</u> and <u>2</u>) are characterized by a non aromatic ring A or C, respectively.


From the berries of Psorospermum glaberrimum, collected in the Ivory Coast, we have now isolated a new type of prenylated anthranoid containing a lactone A ring. Chromatography of the acetone extract afforded inter alia a compound $C_{20}H_{20}O_4$, named psorolactone, 3, which contained а 1.8dihydroxynaphthalene moiety, but exhibited spectral features (λ_{max}^{MeOH} 260. 304sh, 318, 391 nm; V^{CHCl}, 3380, 1655, 1630, 1570, 995,910 cm⁻¹; NMR spectra in Table 1) quite different from those of vismiones and ferruginins [1]. In particular, the upfield shift (δ 13.7 vs 16.3 in <u>1</u> and 17.1 in <u>2</u> [1]) of the 9-OH in the ¹H NMR spectrum suggested a different kind of chelation and since the alicyclic ring had to contain an extra oxygen, the presence of the lactone ring as depicted in 3 was postulated. By the presence of two ortho coupled aromatic protons, the α, α -dimethylallyl chain (¹H NMR evidence) could be located either on C-7 or C-5. The C-7 substitution was established when the monomethyl derivative 4 [2], obtained by treatment of 3 with CH_2N_2 , was treated with TFA to yield compound 5, $C_{21}H_{22}O_{4}$, in which an α, α, β trimethyldihydrofuran ring was present [3]. The above reaction gave one more product $\underline{6}$, $C_{20}H_{22}O_3$, in which the ring closure of the side chain

present in <u>3</u> had occurred, as well as a modification of the lactone ring. The latter compound now possessed signals in the NMR spectra characteristic of a 2-methylcyclopentanone ring (¹H NMR: δ 3.3, q, J= 17 and 3.5Hz, H- α ; 2.7, q, J= 17 and 9Hz, H- β ; 2.55, m, H- γ ; 1.27, d, J= 6.5Hz, Me; ¹³C NMR: δ 206, CO; 43.1, C-2; 34.1, C-3; 16.3, Me). Compound <u>5</u> was converted into <u>6</u>, when the reaction mixture was allowed to stand for a longer time, and <u>6</u> was the main product when the reaction was carried out in H₂SO₄. Scheme 1 illustrates a plausible mechanism for the ring contraction proposed above.

Scheme 1


The postulated A ring was supported by PtO_2 catalyzed hydrogenation in AcOH of the dimethylderivative $\underline{7}$, $C_{22}H_{24}O_4$ (formed by reaction of $\underline{3}$ with Me_2SO_4). The latter reaction afforded an acid, isolated as its methylester $C_{23}H_{32}O_4$, and formulated as $\underline{8}$ on the basis of the spectral data [4]. The formation of $\underline{8}$ may be explained trough the hydrolytic A ring opening by AcOH and subsequent hydrogenation/hydrogenolysis. Biogenetically psorolactone 3 may derive from a vismione by a Baeyer-Villiger type oxidation.

568

Table	1.	1 _H	NMR	and	13 م	NMR	data	for	r
Table	1.	н	NMR	and	C	NMR	data	for	3

C/H Number	δ ^a C	δ ^b H						
C-1	171.6							
C-2/H-2	135.1	6.27 m						
C-3	128.8 ^C							
$C-4/H_{2}-4$	36.7	3.40 br s						
C-4a	135.2 ^d							
C-5/H-5	117.0 ^e	7.60 d (J 8.5Hz)						
C-6/H-6	131.4	7.10 d (J 8.5Hz)						
C-7	129.6 ^C							
С-8/ОН-8	155.1	10.15 s						
C-8a	104.1							
С-9/ОН-9	164.4	13.68 s						
C-9a	113.0							
C-10/H-10	117.1 ^e	6.90 br s ^f						
C-10a	136.9 ^d							
C-11/Me-11	17.2	1.80 d (J 1.5Hz)						
C-12	40.7							
C-13/Me-13	27.1	1.55 s						
C-14/Me-14	27.1	1.55 s						
C-15/H-15	147.8	6.30 m						
C-16/H-16	110.1	5.0 m						
a 75 MHz, CDCl ₃								
b 300 MHz, CDCl ₃								
c,d,e Assignments may be reversed								
f Enhanced by irradiating at δ 3.40								

Acknowledgment

We thank Prof. James P. Kutney, the University of British Columbia, for a very useful discussion of the paper.

References and footnotes

- 1) F. Delle Monache, Rev. Latinoamer. Quim., 16, 5 (1985).
- 2) $\underline{4}$, 1 H NMR: δ 10.0 (OH-10), 4.0 (OMe-9).
- 3) 5, $C_{21}H_{22}O_4$, found 338.1508, calcd 338.1518; ¹H NMR: δ 7.23 (s, H-5, H-6), 7.13 (s, H-10), 6.05 (q, J= 1.5Hz, H-2), 4.55 (q, J= 6.5Hz, H-15), 4.0 (s, OMe-9), 3.26 (s, H₂-4), 1.70 (d, J= 1.5Hz, Me-11), 1.42 (d, J= 6.5Hz, Me-16), 1.33 and 1.13 (ss, Me-13, Me-14); ¹³C NMR : δ 163.1 (C-1), 157.9 (C-9), 153.6 (C-8),139.2 (C-10a), 136.6 (C-4a), 134.4 (C-2), 132.6 (C-7), 127.5 (C-3), 123.6 (C-6), 121.0, 120.3 (C-8a, C-9a), 119.9, 119.4 (C-10, C-5), 89.8 (C-15), 64.6 (OMe), 43.5 (C-12), 35.8 (C-4), 26.7, 23.0 (C-13, C-14), 17.6 (C-11), 14.7 (C-16).
- 4) <u>8</u>, M^{1+} 372; ¹H NMR: δ 7.35 (s, H-5, H-6), 7.26 (s, H-10), 3.90, 3.77, 3.70 (ss, 3xOMe), 2.57 (d, J= 6Hz, H₂-4), 1.90 (q, J= 6.5Hz, H₂-15), 1.40 (s, Me-13, Me-14), 1.27 (m, H-3), 0.93 (d, J= 6Hz, Me-2, Me-11), 0.70 (t, J= 6.5Hz, Me-16); ¹³C NMR: δ 169.3 (C-1), 154.7, 152.6 (C-8, C-9), 137.0, 136.4, 135.4 (C-4a, C-7, C-10a), 127.9 (C-6), 126.9 C-6a), 124.6 (C-10), 122.8 (C-5), 119.7 (C-8a), 67.6, 60.6 (OMe-8, OMe-9), 52.1 (OMe ester), 42.6 (C-12), 39.1 (C-15), 29.6 (C-3), 29.3, 29.2 (C-13, C-14), 22.6 (C-2, C-11), 9.7 (C-16).

(Received in UK 2 December 1986)